z-logo
open-access-imgOpen Access
Film Conformality and Extracted Recombination Probabilities of O Atoms during Plasma-Assisted Atomic Layer Deposition of SiO2, TiO2, Al2O3, and HfO2
Author(s) -
Karsten Arts,
Mikko Utriainen,
Riikka L. Puurunen,
W. M. M. Kessels,
Harm C. M. Knoops
Publication year - 2019
Publication title -
the journal of physical chemistry c
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.401
H-Index - 289
eISSN - 1932-7455
pISSN - 1932-7447
DOI - 10.1021/acs.jpcc.9b08176
Subject(s) - atomic layer deposition , recombination , plasma , radical , deposition (geology) , materials science , layer (electronics) , analytical chemistry (journal) , atomic physics , chemistry , nanotechnology , physics , paleontology , biochemistry , organic chemistry , quantum mechanics , chromatography , sediment , biology , gene
Surface recombination of plasma radicals is generally considered to limit film conformality during plasma-assisted atomic layer deposition (ALD). Here, we experimentally studied film penetration into high-aspect-ratio structures and demonstrated that it can give direct information on the recombination probability r of plasma radicals on the growth surface. This is shown for recombination of oxygen (O) atoms on SiO2, TiO2, Al2O3, and HfO2 where a strong material dependence has been observed. Using extended plasma exposures, films of SiO2 and TiO2 penetrated extremely deep up to an aspect ratio (AR) of ∼900, and similar surface recombination probabilities of r = (6 ± 2) × 10–5 and (7 ± 4) × 10–5 were determined for these processes. Growth of Al2O3 and HfO2 was conformal up to depths corresponding to ARs of ∼80 and ∼40, with r estimated at (1–10) × 10–3 and (0.1–10) × 10–2, respectively. Such quantitative insight into surface recombination, as provided by our method, is essential for modeling radical-surface...

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom