Film Conformality and Extracted Recombination Probabilities of O Atoms during Plasma-Assisted Atomic Layer Deposition of SiO2, TiO2, Al2O3, and HfO2
Author(s) -
Karsten Arts,
Mikko Utriainen,
Riikka L. Puurunen,
W. M. M. Kessels,
Harm C. M. Knoops
Publication year - 2019
Publication title -
the journal of physical chemistry c
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.401
H-Index - 289
eISSN - 1932-7455
pISSN - 1932-7447
DOI - 10.1021/acs.jpcc.9b08176
Subject(s) - atomic layer deposition , recombination , plasma , radical , deposition (geology) , materials science , layer (electronics) , analytical chemistry (journal) , atomic physics , chemistry , nanotechnology , physics , paleontology , biochemistry , organic chemistry , quantum mechanics , chromatography , sediment , biology , gene
Surface recombination of plasma radicals is generally considered to limit film conformality during plasma-assisted atomic layer deposition (ALD). Here, we experimentally studied film penetration into high-aspect-ratio structures and demonstrated that it can give direct information on the recombination probability r of plasma radicals on the growth surface. This is shown for recombination of oxygen (O) atoms on SiO2, TiO2, Al2O3, and HfO2 where a strong material dependence has been observed. Using extended plasma exposures, films of SiO2 and TiO2 penetrated extremely deep up to an aspect ratio (AR) of ∼900, and similar surface recombination probabilities of r = (6 ± 2) × 10–5 and (7 ± 4) × 10–5 were determined for these processes. Growth of Al2O3 and HfO2 was conformal up to depths corresponding to ARs of ∼80 and ∼40, with r estimated at (1–10) × 10–3 and (0.1–10) × 10–2, respectively. Such quantitative insight into surface recombination, as provided by our method, is essential for modeling radical-surface...
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom