z-logo
open-access-imgOpen Access
Role of Nitrogen on the Mechanical Properties of the Novel Carbon Nitride Nanothreads
Author(s) -
Zhuoqun Zheng,
Haifei Zhan,
Yihan Nie,
Xu Xu,
Yuantong Gu
Publication year - 2019
Publication title -
the journal of physical chemistry c
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.401
H-Index - 289
eISSN - 1932-7455
pISSN - 1932-7447
DOI - 10.1021/acs.jpcc.9b07441
Subject(s) - materials science , nanocomposite , carbon nitride , ultimate tensile strength , carbon fibers , nitride , nanostructure , bending , composite material , atomic units , tensile strain , nanotechnology , molecular dynamics , composite number , chemistry , computational chemistry , organic chemistry , catalysis , layer (electronics) , physics , photocatalysis , quantum mechanics
Carbon nanothread (C-NTH) is a new ultrathin one-dimensional sp3 carbon nanostructure, which exhibits promising applications in novel carbon nanofibers and nanocomposites. Recently, researchers have successfully developed a new alternative structure - ultrathin carbon nitride nanothread (CN-NTH). In this work, we investigate the mechanical properties of CN-NTHs through large-scale molecular dynamics simulations. Comparing with their C-NTH counterparts, CN-NTHs are found to exhibit a higher tensile and bending stiffness. In particular, because of the bond redistribution, the CN-NTHs in the polymer I group and tube (3,0) group are found to possess a higher failure strain than their C-NTH counterparts. However, the CN-NTH in the polytwistane group has a smaller failure strain compared with the pristine C-NTH. According to the atomic configurations, the presence of nitrogen atoms always leads to stress/strain concentrations for the nanothreads under tensile deformation. This study provides a comprehensive understanding of the mechanical properties of CN-NTHs, which should shed light on their potential applications such as fibers or reinforcements for nanocomposites.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom