Dynamical Study of the Dissociative Chemisorption of CHD3 on Pd(111)
Author(s) -
Nick Gerrits,
Helen Chadwick,
Geert–Jan Kroes
Publication year - 2019
Publication title -
the journal of physical chemistry c
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.401
H-Index - 289
eISSN - 1932-7455
pISSN - 1932-7447
DOI - 10.1021/acs.jpcc.9b05757
Subject(s) - transferability , reactivity (psychology) , chemistry , chemisorption , methane , density functional theory , catalysis , chemical physics , molecular dynamics , computational chemistry , molecule , atomic physics , physics , organic chemistry , medicine , statistics , alternative medicine , mathematics , logit , pathology
The specific reaction parameter (SRP) approach to density functional theory has been shown to model reactions of polyatomic molecules with metal surfaces important for heterogeneous catalysis in the industry with chemical accuracy. However, transferability of the SRP functional among systems in which methane interacts with group 10 metals remains unclear for methane + Pd(111). Therefore, in this work, predictions have been made for the reaction of CHD 3 on Pd(111) using Born-Oppenheimer molecular dynamics while also performing a rough comparison with experimental data for CH 4 + Pd(111) obtained for lower incidence energies. Hopefully, future experiments can test the transferability of the SRP functional among group 10 metals also for Pd(111). We found that the reactivity of CHD 3 on Pd(111) is intermediate between and similar to either Pt(111) or Ni(111), depending on the incidence energy and the initial vibrational state distribution. This is surprising because the barrier height and experiments performed at lower incidence energies than investigated here suggest that the reactivity of Pd(111) should be similar to that of Pt(111) only. The relative decrease in the reactivity of Pd(111) at high incidence energies is attributed to site specificity of the reaction and to dynamical effects such as the bobsled effect and energy transfer from methane to the surface.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom