Automated Detection and Characterization of Surface Restructuring Events in Bimetallic Catalysts
Author(s) -
Jin Soo Lim,
Nicola Molinari,
Kaining Duanmu,
Philippe Sautet,
Boris Kozinsky
Publication year - 2019
Publication title -
the journal of physical chemistry c
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.401
H-Index - 289
eISSN - 1932-7455
pISSN - 1932-7447
DOI - 10.1021/acs.jpcc.9b04863
Subject(s) - restructuring , bimetallic strip , characterization (materials science) , vacancy defect , catalysis , materials science , density functional theory , chemical physics , chemistry , nanotechnology , computational chemistry , crystallography , biochemistry , finance , economics
Surface restructuring in bimetallic systems has recently been shown to play a crucial role in heterogeneous catalysis. In particular, the segregation in binary alloys can be reversed in the presence of strongly bound adsorbates. Mechanistic characterization of such restructuring phenomena at the atomic level remains scarce and challenging due to the large configurational space that must be explored. To this end, we propose an automated method to discover elementary surface restructuring processes in an unbiased fashion, using Pd/Ag as an example. We employ high-temperature classical molecular dynamics (MD) to rapidly detect restructuring events, isolate them, and optimize using density functional theory (DFT). In addition to confirming the known exchange descent mechanism, our systematic approach has revealed three new predominant classes of events at step edges of close-packed surfaces that have not been considered before: (1) vacancy insertion; (2) direct exchange; (3) interlayer exchange. The discovere...
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom