z-logo
open-access-imgOpen Access
Distinguishing between Charge-Transfer Mechanisms at Organic/Inorganic Interfaces Employing Hybrid Functionals
Author(s) -
Elisabeth Wruß,
Egbert Zojer,
Oliver Hofmann
Publication year - 2018
Publication title -
the journal of physical chemistry c
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.401
H-Index - 289
eISSN - 1932-7455
pISSN - 1932-7447
DOI - 10.1021/acs.jpcc.8b03699
Subject(s) - delocalized electron , polarizability , charge (physics) , chemical physics , density functional theory , hybrid functional , chemistry , observable , electron transfer , substrate (aquarium) , molecule , materials science , computational chemistry , physics , quantum mechanics , oceanography , organic chemistry , geology
When modeling inorganic/organic interfaces with density functional theory (DFT), the outcome often depends on the chosen functional. Hybrid functionals, which employ a fraction of Hartree–Fock exchange α, tend to give better results than the more commonly applied semilocal functionals, because they remove or at least mitigate the unphysical electron self-interaction. However, the choice of α is not straightforward, as its effect on observables depends on the physical properties of the investigated system, such as the size of the molecule and the polarizability of the substrate. In this contribution, we demonstrate this impact exemplarily for tetrafluoro-1,4-benzoquinone on semiconducting (copper-I-oxide Cu2O) and metallic (Cu) substrates and explore how the simulated charge transfer depends on α. We determine the value α* that marks the transition point between spurious over-localization and over-delocalization of charges. This allows us to shed light on the interplay between the value of α* and the physi...

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom