z-logo
open-access-imgOpen Access
Electrodeposition of Bi Thin Films on n-GaAs(111)B. I. Correlation between the Overpotential and the Nucleation Process
Author(s) -
Alicia Prados,
R. Ranchal
Publication year - 2018
Publication title -
the journal of physical chemistry c
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.401
H-Index - 289
eISSN - 1932-7455
pISSN - 1932-7447
DOI - 10.1021/acs.jpcc.8b01838
Subject(s) - nucleation , overpotential , materials science , thin film , bismuth , electrolyte , semiconductor , nanotechnology , chemical physics , optoelectronics , chemistry , electrode , metallurgy , organic chemistry , electrochemistry
Bismuth thin films constitute a promising nanostructure for the fabrication of spin-based devices. To achieve this goal, it is necessary to obtain high-quality Bi layers with controlled and reproducible properties. Therefore, studies focused on the understanding of the nucleation process and the correlation between the growth conditions and the film properties are of great interest. In this work, we have studied the electrodeposition of Bi thin films onto GaAs(111)B substrates at different overpotentials. In Part I, we have analyzed the nucleation of the films by means of potentiostatic curves. The current density transients have been deconvoluted into individual processes taking into account the energy band diagram of the semiconductor–electrolyte interface. The deconvolution of the current density transients indicates that Bi electrodeposition follows a 3D nucleation controlled by diffusion, accompanied by concurrent processes such as both proton adsorption and reduction. The competition of these proces...

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom