Quantum-Chemical DFT Study of Direct and H- and C-Assisted CO Dissociation on the χ-Fe5C2 Hägg Carbide
Author(s) -
Robin J. P. Broos,
Bart Zijlstra,
Ivo A. W. Filot,
Emiel J. M. Hensen
Publication year - 2018
Publication title -
the journal of physical chemistry c
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.401
H-Index - 289
eISSN - 1932-7455
pISSN - 1932-7447
DOI - 10.1021/acs.jpcc.8b01064
Subject(s) - quantum chemical , dissociation (chemistry) , carbide , materials science , quantum , chemistry , computational chemistry , crystallography , physics , metallurgy , molecule , quantum mechanics , organic chemistry
The first step in the Fischer-Tropsch reaction is the production of C 1 monomers by the dissociation of the C-O bond. Although Fe is the active metal, it is well known that under typical reaction conditions, it changes into various carbide phases. The Hägg carbide (χ-Fe 5 C 2 ) phase is usually considered as the catalytically active phase. We carried out a comprehensive DFT study of CO dissociation on various surface terminations of the Hägg carbide, selected on their specific site topology and the presence of stepped sites. Based on the reaction energetics, we identified several feasible CO dissociation pathways over the Hägg carbide. In this study, we have compared the direct CO dissociation with H- and C-assisted CO dissociation mechanisms. We demonstrated that the reaction rate for CO dissociation critically depends on the presence and topology of interstitial C atoms close to the active site. Typically, the CO dissociation proceeds via a direct C-O bond scission mechanism on the stepped sites on the Fe carbide surface. We have shown a preference for the direct CO dissociation on the surfaces with a stepped character. The H-assisted CO dissociation, via a CHO intermediate, was preferred when the surface did not have a clear stepped character. We have also shown that activation barriers for dissociation are highly dependent on the surface termination. With a consistent data set and including migration corrections, we then compared the CO dissociation rates based on a simplified kinetic model. With this model, we showed that besides the activation energy, the adsorption energy of the CO, the C and the O species are important for the reaction rate as well. We found that the most active surface termination is a (111̅) surface cut in such a way that the surface exposes B 5 sites that are not occupied by the C atoms. On these B 5 sites, the direct CO dissociation presents the highest rate.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom