z-logo
open-access-imgOpen Access
CO2 Capture Partner Molecules in Highly Loaded PEI Sorbents
Author(s) -
Athanasios Koutsianos,
Andrew R. Barron,
Enrico Andreoli
Publication year - 2017
Publication title -
the journal of physical chemistry c
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.401
H-Index - 289
eISSN - 1932-7455
pISSN - 1932-7447
DOI - 10.1021/acs.jpcc.7b07541
Subject(s) - molecule , amine gas treating , chemistry , hydrogen bond , diffusion , solubility , methanol , chemical engineering , toluene , chemical polarity , ethanol , organic chemistry , thermodynamics , physics , engineering
Decoupling amine loading from diffusion resistance is one of the main challenges in the development of immobilized amine CO2 sorbents. Water has been reported to serve this goal, alleviating CO2 diffusional hindrance in highly loaded amine sorbents. Acting as a mass transport facilitator, water is not the only partner molecule able to enhance bulk CO2 diffusion. Herein, we show that the enhancing effect of methanol is comparable to that of water in polyethylenimine-based sorbents. Other molecules, such as ethanol, isopropanol, and chloroform, were also examined but did not appear to facilitate CO2 transport and uptake. Based on a comparison of the Hansen solubility parameters of these molecules, it appears that polarity plays a crucial role in enhancing CO2 diffusion together with molecular hindrance and hydrogen bonding to a lesser extent.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom