z-logo
open-access-imgOpen Access
Structure of Hydrated Gibbsite and Brucite Edge Surfaces: DFT Results and Further Development of the ClayFF Classical Force Field with Metal–O–H Angle Bending Terms
Author(s) -
Maxime Pouvreau,
Jeffery A. Greathouse,
Randall T. Cygan,
Andrey G. Kalinichev
Publication year - 2017
Publication title -
the journal of physical chemistry c
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.401
H-Index - 289
eISSN - 1932-7455
pISSN - 1932-7447
DOI - 10.1021/acs.jpcc.7b05362
Subject(s) - gibbsite , brucite , molecular dynamics , aqueous solution , octahedron , density functional theory , metal , chemistry , crystallography , layered double hydroxides , protonation , computational chemistry , atomic units , materials science , bending , magnesium , adsorption , physics , crystal structure , aluminium , composite material , organic chemistry , ion , quantum mechanics
International audienceMolecular scale understanding of the structure and properties of aqueous interfaces with clays, metal (oxy-) hydroxides, layered double hydroxides, and other inorganic phases is strongly affected by significant degrees of structural and compositional disorder of the interfaces. ClayFF was originally developed as a robust and flexible force field for classical molecular simulations of such systems (Cygan, R. T.; Liang, J.-J.; Kalinichev, A. G. J. Phys. Chem. B 2004, 108, 1255–1266). However, despite its success, multiple limitations have also become evident with its use. One of the most important limitations is the difficulty to accurately model the edges of finite size nanoparticles or pores rather than infinitely layered periodic structures. Here we propose a systematic approach to solve this problem by developing specific metal-O-H (M-O-H) bending terms for ClayFF, Ebend = k (theta -theta(0))2 to better describe the structure and dynamics of singly protonated hydroxyl groups at mineral surfaces, particularly edge surfaces. On the basis of a series of DFT calculations, the optimal values of the Al-O-H and Mg-O-H parameters for Al and Mg in octahedral coordination are determined to be theta(0)AlOH = theta(0)MgOH = 110°, kAlOH = 15 kcal mol-1 rad-2 and kMgOH = 6 kcal mol-1 rad-2. Molecular dynamics simulations were performed for fully hydrated models of the basal and edge surfaces of gibbsite, Al(OH)3, and brucite, Mg(OH)2, at the DFT level of theory and at the classical level, using ClayFF with and without the M-O-H term. The addition of the new bending term leads to a much more accurate representation of the orientation of O-H groups at the basal and edge surfaces. The previously observed unrealistic desorption of OH2 groups from the particle edges within the original ClayFF model is also strongly constrained by the new modification

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom