z-logo
open-access-imgOpen Access
Computational Screening of Porous Organic Molecules for Xenon/Krypton Separation
Author(s) -
Marcin Miklitz,
Shan Jiang,
Rob Clowes,
Michael E. Briggs,
Andrew I. Cooper,
Kim E. Jelfs
Publication year - 2017
Publication title -
the journal of physical chemistry c
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.401
H-Index - 289
eISSN - 1932-7455
pISSN - 1932-7447
DOI - 10.1021/acs.jpcc.7b03848
Subject(s) - metadynamics , molecule , xenon , krypton , porosity , molecular dynamics , materials science , chemical physics , computational chemistry , chemistry , nanotechnology , organic chemistry
We performed a computational screening of previously reported porous molecular materials, including porous organic cages, cucurbiturils, cyclodextrins, and cryptophanes, for Xe/Kr separation. Our approach for rapid screening through analysis of single host molecules, rather than the solid state structure of the materials, is evaluated. We use a set of tools including in-house software for structural evaluations, electronic structure calculations for guest binding energies, and molecular dynamics and metadynamics simulations to study the effect of the hosts’ flexibility upon guest diffusion. Our final results confirm that the CC3 cage molecule, previously reported as high performing for Xe/Kr separation, is the most promising of this class of materials reported to date. The Noria molecule was also found to be promising, and we therefore synthesized two related Noria molecules and tested their performance for Xe/Kr separation in the laboratory.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom