z-logo
open-access-imgOpen Access
Supercatalysis by Superexchange
Author(s) -
Stephen Fletcher,
Nicholas J. Van Dijk
Publication year - 2016
Publication title -
the journal of physical chemistry c
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.401
H-Index - 289
eISSN - 1932-7455
pISSN - 1932-7447
DOI - 10.1021/acs.jpcc.6b09099
Subject(s) - superexchange , transmission coefficient , chemistry , electron transfer , catalysis , activation energy , photochemistry , reaction rate constant , ion , chemical physics , computational chemistry , atomic physics , physics , organic chemistry , kinetics , quantum mechanics , transmission (telecommunications) , electrical engineering , engineering
ACS AuthorChoice - This is an open access article published under a Creative Commons Attribution (CC-BY) License, which permits unrestricted use, distribution and reproduction in any medium, provided the author and source are cited.In modern transition state theory, the rate constant for an electron transfer reaction is expressed as the product of four factors: an exponential factor, a pre-exponential factor, an electronic transmission coefficient, and a nuclear transmission coefficient. The activation energy of the reaction manifests inside the exponential factor, and on the conventional view, catalysis occurs by decreasing this activation energy below its catalyst-free value. In the present work we report the discovery of an unusual counter-example in which catalysis occurs by increasing the electron transmission coefficient far above its catalyst-free value. The mechanism involves the formation of a superexchange bridge between an electron donor (a graphite cathode) and an electron acceptor (a pentasulfide ion). The bridge consists of a dz2 orbital inside a cobalt phthalocyanine molecule. The dramatic result is the acceleration of the reduction of pentasulfide ions by more than 5 orders of magnitude compared with the catalyst-free case

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom