z-logo
open-access-imgOpen Access
Consequences of Solid Electrolyte Interphase (SEI) Formation upon Aging on Charge-Transfer Processes in Dye-Sensitized Solar Cells
Author(s) -
Miguel Flasque,
Albert Nguyen Van Nhien,
Davide Moia,
Piers R. F. Barnes,
Frédéric Sauvage
Publication year - 2016
Publication title -
the journal of physical chemistry c
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.401
H-Index - 289
eISSN - 1932-7455
pISSN - 1932-7447
DOI - 10.1021/acs.jpcc.6b05977
Subject(s) - interphase , electrolyte , dye sensitized solar cell , chemical engineering , charge (physics) , materials science , chemistry , electrode , engineering , physics , microbiology and biotechnology , biology , quantum mechanics
Solid electrolyte interphase (SEI) layers form on sensitized-TiO2 photoanodes and platinum counter electrodes when dye-sensitized solar cells (DSSCs) are subjected to an accelerated aging protocol (e.g., heating at 85 °C in the dark for 500 h). To understand how this impacts device operation, we conducted an electrochemical impedance spectroscopy study and found that the SEI induces an additional electron-transfer process from the TiO2 to the electrolyte. This is materialized by the onset of a new charge-transfer semicircle at higher frequencies, predominantly visible under bias voltages similar to and greater than the open-circuit voltage. Our results emphasize the detrimental role of SEI formation on device performance and lifetime. Additionally, nanosecond transient absorption spectroscopy showed that SEI formation reduced the rate of oxidized dye regeneration. We also found that a proportion of the photogenerated holes on the dyes were transferred to the SEI itself. A prolonged aging duration led to the electrode’s mesoporosity network being entirely clogged by the SEI, thus impeding efficient transport of the electrolyte redox couple and being responsible for a further decline in photovoltaic performances

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom