z-logo
open-access-imgOpen Access
Two-Dimensional Porous Electrode Model for Capacitive Deionization
Author(s) -
Ali Hemmatifar,
Michael Stadermann,
Juan G. Santiago
Publication year - 2015
Publication title -
the journal of physical chemistry c
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.401
H-Index - 289
eISSN - 1932-7455
pISSN - 1932-7447
DOI - 10.1021/acs.jpcc.5b05847
Subject(s) - capacitive deionization , desalination , capacitance , materials science , diffusion , ion , adsorption , porous medium , desorption , electrode , chemical physics , analytical chemistry (journal) , porosity , chemistry , membrane , thermodynamics , composite material , chromatography , physics , biochemistry , organic chemistry
Ion transport in porous conductive materials is of great importance in a variety of electrochemical systems including batteries and supercapacitors. We here analyze the coupling of flow and charge transport and charge capacitance in capacitive deionization (CDI). In CDI, a pair of porous carbon electrodes is employed to electrostatically retain and remove ionic species from aqueous solutions. We here develop and solve a novel unsteady two-dimensional model for capturing the ion adsorption/desorption dynamics in a flow-between CDI system. We use this model to study the complex, nonlinear coupling between electromigration, diffusion, and advection of ions. We also fabricated a laboratory-scale CDI cell which we use to measure the near-equilibrium, cumulative adsorbed salt, and electric charge as a function of applied external voltage. We use these integral measures to validate and calibrate this model. We further present a detailed computational study of the spatiotemporal adsorption/desorption dynamics und...

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom