z-logo
open-access-imgOpen Access
Molecular Mechanism of Depolarization-Dependent Inactivation in W366F Mutant of Kv1.2
Author(s) -
Hiroko Kondo,
Norio Yoshida,
Matsuyuki Shirota,
Kengo Kinoshita
Publication year - 2018
Publication title -
the journal of physical chemistry b
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.864
H-Index - 392
eISSN - 1520-6106
pISSN - 1520-5207
DOI - 10.1021/acs.jpcb.8b09446
Subject(s) - depolarization , shaker , biophysics , chemistry , membrane potential , kcsa potassium channel , mutant , potassium channel , membrane , ion channel , biochemistry , biology , physics , receptor , quantum mechanics , gene , vibration
Voltage-gated potassium channels play crucial roles in regulating membrane potential. They are activated by membrane depolarization, allowing the selective permeation of K + ions across the plasma membrane, and enter a nonconducting state after lasting depolarization, a process known as inactivation. Inactivation in voltage-activated potassium channels occurs through two distinct mechanisms, N-type and C-type inactivation. C-type inactivation is caused by conformational changes in the extracellular mouth of the channel, whereas N-type inactivation is elicited by changes in the cytoplasmic mouth of the protein. The W434F-mutated Shaker channel is known as a nonconducting mutant and is in a C-type inactivation state at a depolarizing membrane potential. To clarify the structural properties of C-type inactivated protein, we performed molecular dynamics simulations of the wild-type and W366F (corresponding to W434F in Shaker) mutant of the Kv1.2-2.1 chimera channel. The W366F mutant was in a nearly nonconducting state with a depolarizing voltage and recovered from inactivation with a reverse voltage. Our simulations and three-dimensional reference interaction site model analysis suggested that structural changes in the selectivity filter upon membrane depolarization trap K + ions around the inner mouth of the selectivity filter and prevent ion permeation. This pore restriction is involved in the molecular mechanism of C-type inactivation.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom