Does α-Tocopherol Flip-Flop Help to Protect Membranes Against Oxidation?
Author(s) -
Phansiri Boonnoy,
Mikko Karttunen,
Jirasak Wong-ekkabut
Publication year - 2018
Publication title -
the journal of physical chemistry b
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.864
H-Index - 392
eISSN - 1520-6106
pISSN - 1520-5207
DOI - 10.1021/acs.jpcb.8b09064
Subject(s) - membrane , lipid bilayer , chemistry , bilayer , radical , molecule , aldehyde , biophysics , oxidative stress , organic chemistry , biochemistry , biology , catalysis
α-Tocopherols (α-toc) are crucial in protecting biological membranes against oxidation by free radicals. We investigate the behavior of α-toc molecules in lipid bilayers containing oxidized lipids by molecular dynamics (MD) simulations. To verify the approach, the location and orientation of α-toc are first shown to be in agreement with previous experimental results. The simulations further show that α-toc molecules stay inside the lipid bilayer with their hydroxyl groups in contact with the bilayer surface. Interestingly, interbilayer α-toc flip-flop was observed in both oxidized and nonoxidized bilayers with significantly higher frequency in aldehyde lipid bilayer. Free-energy calculations were performed, and estimates of the flip-flop rates across the bilayers were determined. As the main finding, our results show that the presence of oxidized lipids leads to a significant decrease of free-energy barriers and that the flip-flop rates depend on the type of oxidized lipid present. Our results suggest that α-toc molecules could potentially act as high-efficacy scavengers of free radicals to protect membranes from oxidative attack and help stabilize them under oxidative stress.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom