z-logo
open-access-imgOpen Access
Local Structure and Polar Order in Liquid N-Methyl-2-pyrrolidone (NMP)
Author(s) -
Nadir S. Basma,
Thomas F. Headen,
Milo S. P. Shaffer,
Neal T. Skipper,
Christopher A. Howard
Publication year - 2018
Publication title -
the journal of physical chemistry b
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.864
H-Index - 392
eISSN - 1520-6106
pISSN - 1520-5207
DOI - 10.1021/acs.jpcb.8b08020
Subject(s) - solvation , chemistry , boiling point , dipole , polar , neutron scattering , chemical physics , antiparallel (mathematics) , solvent , solvation shell , crystallography , molecule , scattering , physics , organic chemistry , optics , quantum mechanics , astronomy , magnetic field
N-Methyl-2-pyrrolidone (NMP) is an exceptional solvent, widely used in industry and for nanomaterials processing. Yet despite its ubiquity, its liquid structure, which ultimately dictates its solvation properties, is not fully known. Here, neutron scattering is used to determine NMP's structure in unprecedented detail. Two dominant nearest-neighbor arrangements are found, where rings are parallel or perpendicular. However, compared with related solvents, NMP has a relatively large population of parallel approaches, similar only to benzene, despite its nonaromaticity and the presence of the normally structure-reducing methyl group. This arrangement is underpinned by NMP's dipole moment, which has a profound effect on its structure: nearest-neighbor molecules arrange in an antiparallel but offset fashion. This polar-induced order extends beyond the first solvation shell, resulting in ordered trimers that reach the nanometer range. The degree of order and balance of interactions rationalize NMP's high boiling point and versatile capabilities to solvate both charged and uncharged species.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom