Structural Origins of FRET-Observed Nascent Chain Compaction on the Ribosome
Author(s) -
Daniel A. Nissley,
Edward P. O’Brien
Publication year - 2018
Publication title -
the journal of physical chemistry b
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.864
H-Index - 392
eISSN - 1520-6106
pISSN - 1520-5207
DOI - 10.1021/acs.jpcb.8b07726
Subject(s) - förster resonance energy transfer , folding (dsp implementation) , protein folding , chemical physics , downhill folding , domain (mathematical analysis) , crystallography , fluorescence , biophysics , native state , chemistry , translation (biology) , compaction , biological system , physics , phi value analysis , materials science , biology , mathematics , biochemistry , optics , mathematical analysis , electrical engineering , messenger rna , gene , engineering , composite material
A fluorescence signal arising from a Förster resonance energy transfer process was used to monitor conformational changes of a domain within the E. coli protein HemK during its synthesis by the ribosome. An increase in fluorescence was observed to begin 10 s after translation was initiated, indicating the domain became more compact in size. Since fluorescence only reports a single value at each time point it contains very little information about the structural ensemble that gives rise to it. Here, we supplement this experimental information with coarse-grained simulations that describe protein conformations and transitions at a spatial resolution of 3.8 Å. We use these simulations to test three hypotheses that might explain the cause of domain compaction: (1) that poor solvent quality conditions drive the unfolded state to compact, (2) that a change in the dimension of the space the domain occupies upon moving outside the exit tunnel causes compaction, or (3) that domain folding causes compaction. We find that domain folding and dimensional collapse are both consistent with the experimental data, while poor-solvent collapse is inconsistent. We identify alternative dye labeling positions on HemK that upon fluorescence can differentiate between the domain folding and dimensional collapse mechanisms. Partial folding of domains has been observed in C-terminally truncated forms of proteins. Therefore, it is likely that the experimentally observed compact state is a partially folded intermediate consisting, according to our simulations, of the first three helices of the HemK N-terminal domain adopting a native, tertiary configuration. With these simulations we also identify the possible cotranslational folding pathways of HemK.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom