Coupled Valence-Bond State Molecular Dynamics Description of an Enzyme-Catalyzed Reaction in a Non-Aqueous Organic Solvent
Author(s) -
Élise Duboué-Dijon,
Eva Pluhařová,
Dominik Domin,
Kakali Sen,
Aoife C. Fogarty,
Nicolas Chéron,
Damien Laage
Publication year - 2017
Publication title -
the journal of physical chemistry b
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.864
H-Index - 392
eISSN - 1520-6106
pISSN - 1520-5207
DOI - 10.1021/acs.jpcb.7b03102
Subject(s) - chemistry , tetrahedral carbonyl addition compound , active site , nucleophile , enzyme catalysis , catalysis , solvent effects , acylation , aqueous solution , reaction intermediate , transition state , solvent , computational chemistry , photochemistry , organic chemistry
Enzymes are widely used in nonaqueous solvents to catalyze non-natural reactions. While experimental measurements showed that the solvent nature has a strong effect on the reaction kinetics, the molecular details of the catalytic mechanism in nonaqueous solvents have remained largely elusive. Here we study the transesterification reaction catalyzed by the paradigm subtilisin Carlsberg serine protease in an organic apolar solvent. The rate-limiting acylation step involves a proton transfer between active-site residues and the nucleophilic attack of the substrate to form a tetrahedral intermediate. We design the first coupled valence-bond state model that simultaneously describes both reactions in the enzymatic active site. We develop a new systematic procedure to parametrize this model on high-level ab initio QM/MM free energy calculations that account for the molecular details of the active site and for both substrate and protein conformational fluctuations. Our calculations show that the reaction energy barrier changes dramatically with the solvent and protein conformational fluctuations. We find that the mechanism of the tetrahedral intermediate formation during the acylation step is similar to that determined under aqueous conditions, and that the proton transfer and nucleophilic attack reactions occur concertedly. We identify the reaction coordinate to be mostly due to the rearrangement of some residual water molecules close to the active site.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom