z-logo
open-access-imgOpen Access
Exciton–Exciton Annihilation as a Probe of Interchain Interactions in PPV–Oligomer Aggregates
Author(s) -
Linda A. Peteanu,
Sanchari Chowdhury,
Jurjen Wildeman,
Matthew Y. Sfeir
Publication year - 2017
Publication title -
the journal of physical chemistry b
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.864
H-Index - 392
eISSN - 1520-6106
pISSN - 1520-5207
DOI - 10.1021/acs.jpcb.6b11250
Subject(s) - exciton , annihilation , oligomer , materials science , chemical physics , condensed matter physics , chemistry , physics , quantum mechanics , polymer chemistry
One measure of exciton mobility in an aggregate is the efficiency of exciton-exciton annihilation (EEA). Both exciton mobilities and EEA are enhanced for aggregate morphologies in which the distances between chromophores and their relative orientations are favorable for Förster energy transfer. Here this principle is applied to gauge the strength of interchain interactions in aggregates of two substituted PPV oligomers of 7 (OPPV7) and 13 (OPPV13) phenylene rings. These are models of the semiconducting conjugated polymer MEH-PPV. The aggregates were formed by adding a poor solvent (methanol or water) to the oligomers dissolved in a good solvent. Aggregates formed from the longer-chain oligomer and/or by addition of the more polar solvent showed the largest contribution of EEA in their emission decay dynamics. This was found to correlate with the degree to which the steady-state emission spectrum of the monomer is altered by aggregation. The wavelength dependence of the EEA signal was also shown to be useful in differentiating emission features due to monomeric and aggregated chains when their spectra overlap significantly.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom