z-logo
open-access-imgOpen Access
Single-Molecule Studies of Unlabeled Full-Length p53 Protein Binding to DNA
Author(s) -
Philippa Nuttall,
Kidan Lee,
Pietro Ciccarella,
Marco Carminati,
Giorgio Ferrari,
Jae Hyun Kim,
Tim Albrecht
Publication year - 2016
Publication title -
the journal of physical chemistry b
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.864
H-Index - 392
eISSN - 1520-6106
pISSN - 1520-5207
DOI - 10.1021/acs.jpcb.5b11076
Subject(s) - nanopore , dna , biophysics , affinities , atomic force microscopy , biosensor , chemistry , nanotechnology , molecule , binding affinities , small molecule , förster resonance energy transfer , computational biology , fluorescence , biology , biochemistry , materials science , physics , receptor , organic chemistry , quantum mechanics
p53 is an antitumor protein that plays an important role in apoptosis, preserving genomic stability and preventing angiogenesis, and it has been implicated in a large number of human cancers. For this reason it is an interesting target for both fundamental studies, such as the mechanism of interaction with DNA, and applications in biosensing. Here, we report a comprehensive study of label-free, full length p53 (flp53) and its interaction with engineered double-stranded DNA in vitro, at the single-molecule level, using atomic force microscopy (AFM) imaging and solid-state nanopore sensing. AFM data show that dimeric and tetrameric p53 bind to the DNA in a sequence-specific manner, confirming previously reported relative binding affinities. The statistical significance is tested using both the Grubbs test and stochastic simulations. For the first time, ultralow noise solid-state nanopore sensors are employed for the successful differentiation between bare DNA and p53/DNA complexes. Furthermore, translocation statistics reflect the binding affinities of different DNA sequences, in accordance with AFM data. Our results thus highlight the potential of solid-state nanopore sensors for single-molecule biosensing, especially when labeling is either not possible or at least not a viable option.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom