z-logo
open-access-imgOpen Access
Highly Emissive Biological Bilirubin Molecules: Shedding New Light on the Phototherapy Scheme
Author(s) -
Ahmed M. ElZohry,
Valentín DiezCabanes,
Mariachiara Pastore,
Taha Ahmed,
Burkhard Zietz
Publication year - 2021
Publication title -
the journal of physical chemistry b
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.864
H-Index - 392
eISSN - 1520-6106
pISSN - 1520-5207
DOI - 10.1021/acs.jpcb.1c05308
Subject(s) - quantum yield , crystal (programming language) , photochemistry , excited state , monomer , chemistry , density functional theory , molecule , amorphous solid , emission spectrum , crystallography , chemical physics , materials science , computational chemistry , spectral line , atomic physics , fluorescence , polymer , optics , physics , organic chemistry , astronomy , computer science , programming language
Bilirubin (BR) is the main end-product of the hemoglobin catabolism. For decades, its photophysics has been mainly discussed in terms of ultrafast deactivation of the excited state in solution, where, indeed, BR shows a very low green emission quantum yield (EQY), 0.03%, resulting from an efficient nonradiative isomerization process. Herein, we present, for the first time, unique and exceptional photophysical properties of solid-state BR, which amend by changing the type of crystal, from a closely packed α crystal to an amorphous loosely packed β crystal. BR α crystals show a very bright red emission with an EQY of ca. 24%, whereas β crystals present, in addition, a low green EQY of ca. 0.5%. By combining density functional theory (DFT) calculations and time-resolved emission spectroscopy, we trace back this dual emission to the presence of two types of BR molecules in the crystal: a "stiff" monomer, M1, distorted by particularly strong internal H-bonds and a "floppy" monomer, M2, having a structure close to that of BR in solution. We assign the red strong emission of BR crystals to M1 present in both the α and β crystals, while the low green emission, only present in the amorphous (β) crystal, is interpreted as M2 emission. Efficient energy-transfer processes from M2 to M1 in the closely packed α crystal are invoked to explain the absence of the green component in its emission spectrum. Interestingly, these unique photophysical properties of BR remain in polar solvents such as water. Based on these unprecedented findings, we propose a new model for the phototherapy scheme of BR inside the human body and highlight the usefulness of BR as a strong biological fluorescent probe.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom