z-logo
open-access-imgOpen Access
UV-to-IR Absorption of Molecularly p-Doped Polythiophenes with Alkyl and Oligoether Side Chains: Experiment and Interpretation Based on Density Functional Theory
Author(s) -
Ihor Sahalianov,
Jonna Hynynen,
Stephen Barlow,
Seth R. Marder,
Christian Müller,
Igor Zozoulenko
Publication year - 2020
Publication title -
the journal of physical chemistry b
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.864
H-Index - 392
eISSN - 1520-6106
pISSN - 1520-5207
DOI - 10.1021/acs.jpcb.0c08757
Subject(s) - side chain , alkyl , doping , absorption (acoustics) , interpretation (philosophy) , density functional theory , chemistry , materials science , polymer chemistry , organic chemistry , computational chemistry , polymer , optoelectronics , computer science , composite material , programming language
The UV-to-IR transitions in p-doped poly(3-hexylthiophene) (P3HT) with alkyl side chains and polar polythiophene with tetraethylene glycol side chains are studied experimentally by means of the absorption spectroscopy and computationally using density functional theory (DFT) and tight-binding DFT. The evolution of electronic structure is calculated as the doping level is varied, while the roles of dopant ions, chain twisting, and π-π stacking are also considered, each of these having the effect of broadening the absorption peaks while not significantly changing their positions. The calculated spectra are found to be in good agreement with experimental spectra obtained for the polymers doped with a molybdenum dithiolene complex. As in other DFT studies of doped conjugated polymers, the electronic structure and assignment of optical transitions that emerge are qualitatively different from those obtained through earlier "traditional" approaches. In particular, the two prominent bands seen for the p-doped materials are present for both polarons and bipolarons/polaron pairs. The lowest energy of these transitions is due to excitation from the valence band to a spin-resolved orbitals located in the gap between the bands. The higher-energy band is a superposition of excitation from the valence band to a spin-resolved orbitals in the gap and an excitation between bands.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom