Controlling the Large-Scale Fabrication of Supraparticles
Author(s) -
Alexander Plunkett,
Catriona Eldridge,
Gerold A. Schneider,
Berta Domènech
Publication year - 2020
Publication title -
the journal of physical chemistry b
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.864
H-Index - 392
eISSN - 1520-6106
pISSN - 1520-5207
DOI - 10.1021/acs.jpcb.0c07306
Subject(s) - nanotechnology , dispersity , emulsion , materials science , nanomaterials , nanoparticle , colloid , nanoscopic scale , micelle , fabrication , homogeneity (statistics) , pulmonary surfactant , chemical engineering , chemistry , computer science , aqueous solution , organic chemistry , medicine , alternative medicine , pathology , machine learning , polymer chemistry , engineering
Controlling the nanoscale interactions of colloidal building blocks is a key step for the transition from single nanoparticles to tailor-made, architected morphologies and their further integration into functional materials. Solvent evaporation-induced self-assembly within emulsion droplets emerges as a fast, versatile, and low-cost approach to obtain spherical, complex structures, such as supraparticles. Nevertheless, some process-structure relationships able to describe the effects of emulsion conditions on the synthesis outcomes still remain to be understood. Here, we explore the effect of different physicochemical parameters of emulsion-templated self-assembly (ETSA) on supraparticles' formation. Supraparticle size, size dispersity, microporosity, and sample homogeneity are rationalized based on the used surfactant formulation, stabilization mechanism, and viscosity of the emulsion. We further demonstrate the significance of the parameters found by optimizing a transferable, large-scale (gram-size) ETSA setup for the controlled synthesis of spherical supraparticles in a range of defined sizes (from 0.1-10 μm). Ultimately, our results provide new key synthetic parameters able to control the process, promoting the development of supraparticle-based, functional nanomaterials for a wide range of applications.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom