z-logo
open-access-imgOpen Access
Local Molecular Field Theory for Nonequilibrium Systems
Author(s) -
Edward B. Baker,
Jocelyn M. Rodgers,
John D. Weeks
Publication year - 2020
Publication title -
the journal of physical chemistry b
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.864
H-Index - 392
eISSN - 1520-6106
pISSN - 1520-5207
DOI - 10.1021/acs.jpcb.0c03295
Subject(s) - non equilibrium thermodynamics , statistical physics , formalism (music) , electrostatics , electric field , generalization , context (archaeology) , physics , field (mathematics) , linear response theory , consistency (knowledge bases) , classical mechanics , computer science , mathematics , thermodynamics , mathematical analysis , quantum mechanics , condensed matter physics , art , musical , paleontology , artificial intelligence , biology , pure mathematics , visual arts
We provide a framework for extending equilibrium local molecular field (LMF) theory to a statistical ensemble evolving under a time-dependent applied field. In this context, the self-consistency of the original LMF equation is achieved dynamically, which provides an efficient method for computing the equilibrium LMF potential, in addition to providing the nonequilibrium generalization. As a concrete example, we investigate water confined between hydrophobic or charged walls, systems that are very sensitive to the treatment of long-ranged electrostatics. We then analyze confined water in the presence of a time-dependent applied electric field, generated by a sinusoidal or abrupt variation of the magnitudes of uniform charge densities on each wall. Very accurate results are found from the time-dependent LMF formalism even for strong static fields and for time-dependent systems that are driven far from equilibrium where linear response methods fail.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom