z-logo
open-access-imgOpen Access
Characterization of the DNA and Membrane Interactions of a Bioreducible Cell-Penetrating Foldamer in its Monomeric and Dimeric Form
Author(s) -
Christopher Aisenbrey,
Céline Douat,
Antoine Kichler,
Gilles Guichard,
Burkhard Bechinger
Publication year - 2020
Publication title -
the journal of physical chemistry b
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.864
H-Index - 392
eISSN - 1520-6106
pISSN - 1520-5207
DOI - 10.1021/acs.jpcb.0c01853
Subject(s) - dimer , monomer , chemistry , dna , membrane , transfection , polymer , cationic polymerization , steric effects , biophysics , combinatorial chemistry , stereochemistry , polymer chemistry , organic chemistry , biochemistry , biology , gene
The biophysical properties of a designed bioreducible oligourea foldamer, which shows excellent transfection activities in its dimeric form are presented. Binding isotherms of the monomer as well as of the dimer to both DNA and lipid membranes were determined by indole fluorescence. Comparing the monomer with the dimer allows both a precise biophysical characterization of the role of dimerization and characterization of how the covalent linkage between two monomers affects the transfection activity. The results indicate that dimerization results in pronounced changes in the thermodynamics of different steps of the transfection process, which extend well beyond simple steric effects within the dimer. A model emerges where the imidazole-containing polymers compact DNA at neutral pH, but they liberate the polyurea from the DNA complex at low pH, thus being able to rupture acidified endosomes. Indeed, the dimerization inverts the pH dependence of the binding affinities toward the requirements suggested by this model for efficient transfection.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom