Design of Nonideal Eutectic Mixtures Based on Correlations with Molecular Properties
Author(s) -
Laura J. B. M. Kollau,
Remco Tuinier,
Job Verhaak,
Jaap den Doelder,
Ivo A. W. Filot,
Mark Vis
Publication year - 2020
Publication title -
the journal of physical chemistry b
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.864
H-Index - 392
eISSN - 1520-6106
pISSN - 1520-5207
DOI - 10.1021/acs.jpcb.0c01680
Subject(s) - eutectic system , thermodynamics , hydrogen bond , ammonium , salt (chemistry) , materials science , chemistry , molecular dynamics , molecule , computational chemistry , organic chemistry , physics , alloy
In this work, a statistical analysis was performed to reveal how the molecular properties are correlated with the nonideal behavior observed in eutectic mixtures. From this, a statistical model, combined with theory and experimental results, was developed to predict the nonideal behavior of a specific set of eutectic mixtures, consisting of quaternary ammonium bromides with dicarboxylic acids and polyols. The combination of this analysis and this model can be considered as a first step toward the a priori design of eutectic mixtures. The analysis performed is based on principal components. The descriptors used for this are molecular properties of the constituents of these mixtures. The molecular properties are a combination of experimental, theoretical, and computed properties. The analysis reveals that there are strong correlations between the nonideality of the mixtures and a measure of the acidity of the hydrogen bond donating protons, the displacement of the bromide anion, and the bulkiness of the quaternary ammonium salt. Our analysis highlights the design rules of deep eutectic systems (DES), enabling control over the extent of the liquid window. Our model enables prediction of the eutectic temperature for a range of related mixtures.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom