On the Kinetics and Mechanism of the Thiourea Dioxide–Periodate Autocatalysis-Driven Iodine-Clock Reaction
Author(s) -
György Csekő,
Qingyu Gao,
Changwei Pan,
Xu Li,
Attila K. Horváth
Publication year - 2019
Publication title -
the journal of physical chemistry a
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.756
H-Index - 235
eISSN - 1520-5215
pISSN - 1089-5639
DOI - 10.1021/acs.jpca.9b06207
Subject(s) - autocatalysis , chemistry , thiourea , reaction rate , iodine , inorganic chemistry , sodium periodate , kinetics , iodate , iodide , catalysis , organic chemistry , physics , quantum mechanics
The thiourea dioxide-periodate reaction has been investigated under acidic conditions using phosphate buffer within the pH range of 1.1-2.0 at 1.0 M ionic strength adjusted by sodium perchlorate. Absorbance-time series are monitored as a function of time at 468 nm, the isosbestic point of the I 2 -I 3 - system. The profile of these kinetic runs follows either sigmoidal-shaped or rise-and-fall traces depending on the initial concentration ratio of the reactants. The clock species iodine appears after a well-defined but reproducible time lag even in substrate excess, meaning that the system may be classified as an autocatalysis-driven clock reaction. It is also demonstrated that the age of the thiourea dioxide solution markedly shortens the Landolt time, suggesting that the original form of thiourea dioxide (TDO) rearranges into a more reactive form and reacts faster than the original one. The behavior found is consistent with that recently observed in other oxidation reactions of TDO. To characterize the system quantitatively, a 22-step kinetic model is constructed from adapting the kinetic model of the TDO-iodate reaction published recently by supplementing it with six different reactions of periodate. By the help of seven fitted rate coefficients a sound agreement between the measured and calculated absorbance-time traces is obtained.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom