z-logo
open-access-imgOpen Access
Electronic Communication as a Transferable Property of Molecular Bridges?
Author(s) -
Carmen Herrmann
Publication year - 2019
Publication title -
the journal of physical chemistry a
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.756
H-Index - 235
eISSN - 1520-5215
pISSN - 1089-5639
DOI - 10.1021/acs.jpca.9b05618
Subject(s) - superexchange , intramolecular force , electronic structure , chemistry , transferability , quantum tunnelling , ferromagnetism , chemical physics , computer science , condensed matter physics , computational chemistry , physics , stereochemistry , logit , machine learning
Electronic communication through molecular bridges is important for different types of experiments, such as single-molecule conductance, electron transfer, superexchange spin coupling, and intramolecular singlet fission. In many instances, the chemical structure of the bridge determines how the two parts it is connecting communicate, and does so in ways that are transferable between these different manifestations (for example, high conductance often correlates with strong antiferromagnetic spin coupling, and low conductance due to destructive quantum interference correlates with ferromagnetic coupling). Defining electronic communication as a transferable property of the bridge can help transfer knowledge between these different areas of research. Examples and limits of such transferability are discussed here, along with some possible directions for future research, such as employing spin-coupled and mixed-valence systems as structurally well-controlled proxies for understanding molecular conductance and for validating first-principles theoretical methodologies, building conceptual understanding for the growing experimental work on intramolecular singlet fission, and developing measures for the transferability of electronic communication as a bridge property.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom