z-logo
open-access-imgOpen Access
New Basis Set for the Evaluation of Specific Rotation in Flexible Biological Molecules in Solution
Author(s) -
Angelika BaranowskaŁączkowska,
Krzysztof Z. Łączkowski,
Christian Henriksen,
Berta Fernández
Publication year - 2018
Publication title -
the journal of physical chemistry a
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.756
H-Index - 235
eISSN - 1520-5215
pISSN - 1089-5639
DOI - 10.1021/acs.jpca.8b03320
Subject(s) - basis set , basis (linear algebra) , rotation (mathematics) , polarizability , optical rotation , conformational isomerism , molecule , density functional theory , set (abstract data type) , computational chemistry , flexibility (engineering) , specific rotation , polarizable continuum model , statistical physics , chemistry , mathematics , physics , quantum mechanics , computer science , stereochemistry , geometry , statistics , organic chemistry , programming language , solvation
A detailed theoretical investigation of specific rotation is carried out in solution for nine flexible molecules of biological importance. Systematic search for the main conformers is followed by time-dependent density functional theory (TD-DFT) calculations of specific rotation employing a wide range of basis sets. Due to conformational flexibility of the compounds under study, the possibility of basis set size reduction without deterioration of the results is investigated. The increasing size (d-)aug-cc-pVXZ (X = D, T, Q) bases of Dunning et al., and the ORP basis set, recently developed to efficiently provide molecular specific rotation, are used for this purpose. The polarizable continuum model is employed at all steps of the investigation. Comparison of the present results with the available data obtained in a vacuum reveals considerable differences, the values in solution being much closer to the experimental specific rotation data available. The ORP basis set proves to be competitive with the d-aug-cc-pVDZ set of Dunning in specific rotation calculations carried out in solution. While having the same number of functions, the former yields, in general, results considerably closer to the reference triple-ζ values. We can thus recommend the ORP basis set to study the optical rotation in conformationally flexible molecules in solution.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom