z-logo
open-access-imgOpen Access
Probing Conformers of Benzene Dimer with Intermolecular Coulombic Decay Spectroscopy
Author(s) -
Nicolas Sisourat,
Sévan Kazandjian,
Tsveta Miteva
Publication year - 2016
Publication title -
the journal of physical chemistry a
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.756
H-Index - 235
eISSN - 1520-5215
pISSN - 1089-5639
DOI - 10.1021/acs.jpca.6b09501
Subject(s) - dimer , intermolecular force , conformational isomerism , chemistry , electron spectroscopy , spectroscopy , benzene , molecule , crystallography , physics , organic chemistry , quantum mechanics
Benzene dimer is a prototype to study intermolecular interactions between aromatic systems. Owing to the weak interactions between the molecules within the dimer, several conformational geometries are nearly isoenergetic and thus coexist even at low temperatures. Furthermore, standard spectroscopies are unable to distinguish between them. In this work, we study the electronic relaxation processes following inner-valence ionization of benzene and the lowest conformers of benzene dimer. We show that the kinetic energy distributions of the secondary electrons emitted via two autoionization mechanisms, namely, the Auger and the intermolecular coulombic decay (ICD) effects, provide a means to probe the conformers of benzene dimer. The proposed spectroscopy opens the way to a better characterization of weakly bound molecular clusters.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom