z-logo
open-access-imgOpen Access
Modeling Nitrogen Species as Pollutants: Thermochemical Influences
Author(s) -
John Bugler,
Kieran P. Somers,
John M. Simmie,
Felix Güthe,
Henry J. Curran
Publication year - 2016
Publication title -
the journal of physical chemistry a
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.756
H-Index - 235
eISSN - 1520-5215
pISSN - 1089-5639
DOI - 10.1021/acs.jpca.6b05723
Subject(s) - thermochemistry , combustion , chemistry , standard enthalpy of formation , thermodynamics , anharmonicity , enthalpy , nox , ab initio , decomposition , quantum chemical , nitrogen , quantum chemistry , entropy (arrow of time) , computational chemistry , reaction mechanism , molecule , organic chemistry , physics , quantum mechanics , catalysis
To simulate emissions of nitrogen-containing compounds in practical combustion environments, it is necessary to have accurate values for their thermochemical parameters, as well as accurate kinetic values to describe the rates of their formation and decomposition. Significant disparity is observed in the literature for the former, and we therefore present herein high-accuracy ab initio gas-phase thermochemistry for 60 nitrogenous compounds, many of which are important in the formation and consumption chemistry of NOx species. Several quantum-chemical composite methods (CBS-APNO, G3, and G4) were utilized to derive enthalpies of formation via the atomization method. Entropies and heat capacities were calculated from traditional statistical thermodynamics, with oscillators treated as anharmonic based on ro-vibrational property analyses carried out at the B3LYP/cc-pVTZ level of theory. The use of quantum chemical methods, along with the treatments of anharmonicities and hindered rotors, ensures accurate enthalpy of formation, entropy, and heat capacity values across the temperature range 298.15-3000 K. The implications of these results for atmospheric and combustion modeling are discussed.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom