z-logo
open-access-imgOpen Access
How to Compute Electron Ionization Mass Spectra from First Principles
Author(s) -
Christoph Bauer,
Stefan Grimme
Publication year - 2016
Publication title -
the journal of physical chemistry a
Language(s) - English
Resource type - Journals
eISSN - 1520-5215
pISSN - 1089-5639
DOI - 10.1021/acs.jpca.6b02907
Subject(s) - ionization , mass spectrum , spectral line , statistical physics , electron , phase space , yield (engineering) , quantum chemistry , mass spectrometry , electron ionization , space (punctuation) , computational physics , chemistry , physics , computational chemistry , molecule , quantum mechanics , computer science , thermodynamics , ion , supramolecular chemistry , operating system
The prediction of electron ionization (EI) mass spectra (MS) from first principles has been a major challenge for quantum chemistry (QC). The unimolecular reaction space grows rapidly with increasing molecular size. On the one hand, statistical models like Eyring's quasi-equilibrium theory and Rice-Ramsperger-Kassel-Marcus theory have provided valuable insight, and some predictions and quantitative results can be obtained from such calculations. On the other hand, molecular dynamics-based methods are able to explore automatically the energetically available regions of phase space and thus yield reaction paths in an unbiased way. We describe in this feature article the status of both methodologies in relation to mass spectrometry for small to medium sized molecules. We further present results obtained with the QCEIMS program developed in our laboratory. Our method, which incorporates stochastic and dynamic elements, has been a significant step toward the reliable routine calculation of EI mass spectra.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom