A Shock-Tube Study of the CO + OH Reaction Near the Low-Pressure Limit
Author(s) -
Ehson F. Nasir,
Aamir Farooq
Publication year - 2016
Publication title -
the journal of physical chemistry a
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.756
H-Index - 235
eISSN - 1520-5215
pISSN - 1089-5639
DOI - 10.1021/acs.jpca.6b01322
Subject(s) - chemistry , arrhenius equation , shock tube , radical , bar (unit) , carbon monoxide , reaction rate constant , shock wave , carbon dioxide , analytical chemistry (journal) , absorption (acoustics) , molecule , absorption spectroscopy , thermodynamics , kinetics , materials science , activation energy , organic chemistry , optics , physics , quantum mechanics , meteorology , catalysis , composite material
Rate coefficients for the reaction between carbon monoxide and hydroxyl radical were measured behind reflected shock waves over 700-1230 K and 1.2-9.8 bar. The temperature/pressure conditions correspond to the predicted low-pressure limit of this reaction, where the channel leading to carbon dioxide formation is dominant. The reaction rate coefficients were inferred by measuring the formation of carbon dioxide using quantum cascade laser absorption near 4.2 μm. Experiments were performed under pseudo-first-order conditions with tert-butyl hydroperoxide (TBHP) as the OH precursor. Using ultraviolet laser absorption by OH radicals, the TBHP decomposition rate was measured to quantify potential facility effects under extremely dilute conditions used here. The measured CO + OH rate coefficients are provided in Arrhenius form for three different pressure ranges: kCO+OH(1.2-1.6 bar) = (9.14 ± 2.17) × 10(-13) exp(-(1265 ± 190)/T) cm(3) molecule(-1) s(-1); kCO+OH(4.3-5.1 bar) = (8.70 ± 0.84) × 10(-13) exp(-(1156 ± 83)/T) cm(3) molecule(-1) s(-1); and kCO+OH(9.6-9.8 bar) = (7.48 ± 1.92) × 10(-13) exp(-(929 ± 192)/T) cm(3) molecule(-1) s(-1). The measured rate coefficients are found to be lower than the master equation modeling results by Weston et al. [J. Phys. Chem. A, 2013, 117, 821] at 819 K and in closer agreement with the expression provided by Joshi and Wang [Int. J. Chem. Kinet., 2006, 38, 57].
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom