z-logo
open-access-imgOpen Access
DFT Functionals for Modeling of Polyethylene Chains Cross-Linked by Metal Atoms. DLPNO–CCSD(T) Benchmark Calculations
Author(s) -
Martin Blaško,
Lukáš F. Pašteka,
Miroslav Urban
Publication year - 2021
Publication title -
the journal of physical chemistry a
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.756
H-Index - 235
eISSN - 1520-5215
pISSN - 1089-5639
DOI - 10.1021/acs.jpca.1c04793
Subject(s) - density functional theory , open shell , computational chemistry , chemistry , range (aeronautics) , molecular physics , atomic physics , physics , materials science , composite material
Density functional theory (DFT) functionals for calculations of binding energies (BEs) of the polyethylene (PE) chains cross-linked by selected metal atoms (M) are benchmarked against DLPNO-CCSD(T) and DLPNO-CCSD(T1) data. PEX-M-PEX complexes as compared with plain parallel PEX···PEX chains with X = 3-9 carbon atoms are model species characterized by a cooperative effect of covalent C-M-C bonds and interchain dispersion interactions. The accuracy of DLPNO-CC methods was assessed by a comparison of BEs with the canonical CCSD(T) results for small PE3-M-PE3 complexes. Functionals for PEX···PEX and closed-shell PEX-M-PEX complexes (M = Be, Mg, Zn) were benchmarked against DLPNO-CCSD(T) BEs; open-shell complexes (M = Li, Ag, Au) were benchmarked against the DLPNO-CCSD(T1) method with iterative triples. Three dispersion corrections were combined with 25 DFT functionals for calculations of BEs with respect to PEX-M and PEX fragments employing def2-TZVPP and def2-QZVPP basis sets. Accuracy to within 5% for the closed-shell PEX-M-PEX complexes was achieved with five functionals. Less accurate are functionals for the open-shell PEX-M-PEX complexes; only two functionals deviate by less than 15% from DLPNO-CCSD(T1). Particularly problematic were PEX-Li-PEX complexes. A reasonable overall performance across all complexes in terms of the mean absolute percentage error is found for the range-separated hybrid functionals ωB97X-D3 and CAM-B3LYP/D3(BJ)-ABC.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom