z-logo
open-access-imgOpen Access
An Excess Electron Bound to Magnesium Halides and Basic Grignard Compounds (RMgX and RMgR, R = Me, Et, Ph; X = F, Cl, Br)
Author(s) -
Jakub Brzeski,
Sylwia Freza,
Marcin Czapla,
Piotr Skurski
Publication year - 2021
Publication title -
the journal of physical chemistry. a/the journal of physical chemistry. a.
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.756
H-Index - 235
eISSN - 1520-5215
pISSN - 1089-5639
DOI - 10.1021/acs.jpca.1c00750
Subject(s) - chemistry , halide , magnesium , molecule , valence (chemistry) , valence electron , grignard reagent , crystallography , reagent , electron , inorganic chemistry , medicinal chemistry , computational chemistry , organic chemistry , physics , quantum mechanics
Grignard reagents are commonly used in organic synthesis, yet their ability to form stable anionic states has not been recognized thus far. In this work, representative examples of RMgF, RMgCl, and RMgBr molecules involving methyl, ethyl, and phenyl functional groups serving as R substituents are investigated regarding their equilibrium structures, adiabatic electron affinities, and vertical electron detachment energies of their daughter anions. The electronic stabilities determined for the negatively charged Grignard compounds are then compared to those predicted for their corresponding magnesium halides. The anions formed by RMgX (R = Me, Et, Ph; X = F, Cl, Br) molecules are found to be adiabatically electronically stable valence-bound systems characterized by relatively large vertical electron detachment energies spanning the 0.79-1.62 eV range. In addition, significant structural relaxation upon attachment of an excess electron is predicted for all Grignard compounds considered. Furthermore, the re-examination of the anions formed by magnesium halides resulted in recognizing them as valence-bound rather than dipole-bound anions, in contrast to the earlier interpretations.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here