Enzymatic Hydrolysis of Tertiary Amide Bonds by anti Nucleophilic Attack and Protonation
Author(s) -
PerOlof Syrén
Publication year - 2018
Publication title -
the journal of organic chemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.2
H-Index - 228
eISSN - 1520-6904
pISSN - 0022-3263
DOI - 10.1021/acs.joc.8b02053
Subject(s) - chemistry , amide , protonation , nucleophile , peptide bond , amidase , hydrolysis , stereochemistry , organic chemistry , combinatorial chemistry , enzyme , catalysis , ion
The molecular mechanisms conferring high resistance of planar tertiary amide bonds to hydrolysis by most enzymes have remained elusive. To provide a chemical explanation to this unresolved puzzle, UB3LYP calculations were performed on an active site model of Xaa-Pro peptidases. The calculated reaction mechanism demonstrates that biocatalysts capable of tertiary amide bond hydrolysis capitalize on anti nucleophilic attack and protonation of the amide nitrogen, in contrast to the traditional syn displayed by amidases and proteases acting on secondary amide bonds.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom