z-logo
open-access-imgOpen Access
Phosphazene Catalyzed Addition to Electron-Deficient Alkynes: The Importance of Nonlinear Allenyl Intermediates upon Stereoselectivity
Author(s) -
Luis Simón,
Robert S. Paton
Publication year - 2017
Publication title -
the journal of organic chemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.2
H-Index - 228
eISSN - 1520-6904
pISSN - 0022-3263
DOI - 10.1021/acs.joc.7b00540
Subject(s) - stereoselectivity , chemistry , steric effects , catalysis , oniom , bifunctional , olefin fiber , stereochemistry , computational chemistry , combinatorial chemistry , organic chemistry
An ONIOM(QM/MM) study on the mechanism of the Michael addition to triple bonds catalyzed by chiral diiminophosphorane catalysts has been performed to understand the stereoselectivity of the product olefin. Our results are consistent with the experimental enantioselectivity, but more importantly, reveal that the Z vs E preference depends on the influence of the catalyst upon the geometry of the allenyl enolate formed in the addition step. These intermediates show an innate preference for a (Z)-configuration, although this can be suppressed by steric interactions due to a catalyst. This leads to two distinct mechanisms in which the kinetic basis for (E) or (Z)-stereoselectivity is determined by a different step. Bifunctional iminophosphorane catalysts are found to use steric interactions to override innate stereoelectronic effects of the allenyl enolate reactive intermediate.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom