Periselectivity in the aza-Diels–Alder Cycloaddition between α-Oxoketenes and N-(5-Pyrazolyl)imines: A Combined Experimental and Theoretical Study
Author(s) -
JuanCarlos Castillo,
Brian Castro Agudelo,
Jaime Gálvez,
Yannick Carissan,
Jean Rodriguez,
Yoann Coquerel
Publication year - 2020
Publication title -
the journal of organic chemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.2
H-Index - 228
eISSN - 1520-6904
pISSN - 0022-3263
DOI - 10.1021/acs.joc.0c00767
Subject(s) - chemistry , moiety , cycloaddition , ring (chemistry) , double bond , stereochemistry , diazo , medicinal chemistry , computational chemistry , organic chemistry , catalysis
The thermal 6π aza-Diels-Alder cycloadditions between α-oxoketenes, in situ derived from a thermally induced Wolff rearrangement of 2-diazo-1,3-diketones, and N -(5-pyrazolyl)imines as prototypical electron-rich 2-azadienes lead to two distinct sets of products, essentially as a function of the nature of the α-oxoketenes involved. For instance, cyclic five-membered α-oxoketenes lead preferentially to spiro hydropyridin-4-ones, which involves the α-oxoketenes as the 2π partners at their C═C double bond and the N -(5-pyrazolyl)imines as the 4π partners at their 2-azadiene moiety. In contrast, other cyclic and acyclic α-oxoketenes lead preferentially to 1,3-oxazin-4-ones, which now involves the α-oxoketenes as the 4π partners at their 1-oxadiene moiety and the N -(5-pyrazolyl)imines as the 2π partners at their C═N double bond. A computational modeling study using DFT methods allowed rationalizing this change of periselectivity: the formation of spiro hydropyridin-4-ones is under thermodynamic control while the formation of 1,3-oxazin-4-ones is kinetically controlled, and slightly thermodynamically disfavored in the five-membered ring series. The competing cyclodimerization of the α-oxoketenes is also studied in detail.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom