Design of P-Chirogenic Aminophosphine–Phosphinite Ligands at Both Phosphorus Centers: Origin of Enantioselectivities in Pd-Catalyzed Allylic Reactions
Author(s) -
Antonin Jaillet,
Christophe Darcel,
Jérôme Bayardon,
Adrien Schlachter,
Christine Salomon,
Yoann Rousselin,
Pierre D. Harvey,
Sylvain Jugé
Publication year - 2020
Publication title -
the journal of organic chemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.2
H-Index - 228
eISSN - 1520-6904
pISSN - 0022-3263
DOI - 10.1021/acs.joc.0c00536
Subject(s) - phosphinite , phosphorus , allylic rearrangement , catalysis , chemistry , economics , organic chemistry
We have recently patented an unprecedented stereospecific N → O phosphinyl migration process which transforms P-chirogenic aminophosphines into phosphinites. A fine design of aminophosphine phosphinite ligands (AMPP*) derived from ephedrine and bearing a P-chirogenic center either at the aminophosphine or phosphinite moiety was performed. The synthesis of AMPP* ligands with a P-chirogenic aminophosphine moiety was based on the well-established stereospecific reaction of oxazaphospholidine borane with organolithium reagents, followed by trapping with a chlorophosphine and borane decomplexation. Concurrently, the preparation of AMPP* ligands with a P-chirogenic phosphinite moiety was performed by N → O phosphinyl migration of aminophosphines borane by heating at 50 °C with DABCO and then reaction with chlorophosphines. AMPP* ligands were studied in palladium-catalyzed asymmetric allylic alkylations, leading to enantioselectivities from 91% ( R ) to 95% ee ( S ). X-ray crystallographic data for relevant Pd-AMPP* complexes and computer modeling explained the origin of the enantioselectivities based on MO interactions of most stable conformers with nucleophiles.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom