z-logo
open-access-imgOpen Access
Design, Synthesis, and In Vitro and In Vivo Evaluation of an 18F-Labeled Sphingosine 1-Phosphate Receptor 1 (S1P1) PET Tracer
Author(s) -
Adam J. Rosenberg,
Hui Liu,
Hongjun Jin,
Xuyi Yue,
Sean Riley,
Steven J Brown,
Zhude Tu
Publication year - 2016
Publication title -
journal of medicinal chemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.01
H-Index - 261
eISSN - 1520-4804
pISSN - 0022-2623
DOI - 10.1021/acs.jmedchem.6b00390
Subject(s) - in vivo , chemistry , in vitro , sphingosine 1 phosphate , sphingosine , biodistribution , radiosynthesis , potency , ic50 , pharmacology , receptor , ligand (biochemistry) , microbiology and biotechnology , biochemistry , biology
Sphingosine 1-phosphate receptor 1 (S1P1) plays a pivotal signaling role in inflammatory response; because S1P1 modulation has been identified as a therapeutic target for various diseases, a PET tracer for S1P1 would be a useful tool. Fourteen fluorine-containing analogues of S1P ligands were synthesized and their in vitro binding potency measured; four had high potency and selectivity for S1P1 (S1P1 IC50 < 10 nM, >100-fold selectivity for S1P1 over S1P2 and S1P3). The most potent ligand, 28c (IC50 = 2.63 nM for S1P1) was (18)F-labeled and evaluated in a mouse model of LPS-induced acute liver injury to determine its S1P1-binding specificity. The results from biodistribution, autoradiography, and microPET imaging showed higher [(18)F]28c accumulation in the liver of LPS-treated mice than controls. Increased expression of S1P1 in the LPS model was confirmed by immunohistochemical analysis (IHC). These data suggest that [(18)F]28c is a S1P1 PET tracer with high potential for imaging S1P1 in vivo.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here