z-logo
open-access-imgOpen Access
High-Throughput Screening Approach for Nanoporous Materials Genome Using Topological Data Analysis: Application to Zeolites
Author(s) -
Yongjin Lee,
Senja Barthel,
Paweł Dłotko,
Seyed Mohamad Moosavi,
Kathryn Hess,
Berend Smit
Publication year - 2018
Publication title -
journal of chemical theory and computation
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.001
H-Index - 185
eISSN - 1549-9626
pISSN - 1549-9618
DOI - 10.1021/acs.jctc.8b00253
Subject(s) - bottleneck , nanoporous , computer science , throughput , characterization (materials science) , big data , nanotechnology , data mining , materials science , wireless , telecommunications , embedded system
The materials genome initiative has led to the creation of a large (over a million) database of different classes of nanoporous materials. As the number of hypothetical materials that can, in principle, be experimentally synthesized is infinite, a bottleneck in the use of these databases for the discovery of novel materials is the lack of efficient computational tools to analyze them. Current approaches use brute-force molecular simulations to generate thermodynamic data needed to predict the performance of these materials in different applications, but this approach is limited to the analysis of tens of thousands of structures due to computational intractability. As such, it is conceivable and even likely that the best nanoporous materials for any given application have yet to be discovered both experimentally and theoretically. In this article, we seek a computational approach to tackle this issue by transitioning away from brute-force characterization to high-throughput screening methods based on big-data analysis, using the zeolite database as an example. For identifying and comparing zeolites, we used a topological data analysis-based descriptor (TD) recognizing pore shapes. For methane storage and carbon capture applications, our analyses seeking pairs of highly similar zeolites discovered good correlations between performance properties of a seed zeolite and the corresponding pair, which demonstrates the capability of TD to predict performance properties. It was also shown that when some top zeolites are known, TD can be used to detect other high-performing materials as their neighbors with high probability. Finally, we performed high-throughput screening of zeolites based on TD. For methane storage (or carbon capture) applications, the promising sets from our screenings contained high-percentages of top-performing zeolites: 45% (or 23%) of the top 1% zeolites in the entire set. This result shows that our screening approach using TD is highly efficient in finding high-performing materials. We expect that this approach could easily be extended to other applications by simply adjusting one parameter, the size of the target gas molecule.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom