Machine Learning of Dynamic Electron Correlation Energies from Topological Atoms
Author(s) -
James L. McDonagh,
Arnaldo F. Silva,
Mark A. Vincent,
Paul L. A. Popelier
Publication year - 2017
Publication title -
journal of chemical theory and computation
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.001
H-Index - 185
eISSN - 1549-9626
pISSN - 1549-9618
DOI - 10.1021/acs.jctc.7b01157
Subject(s) - van der waals force , intermolecular force , kriging , atom (system on chip) , electronic correlation , statistical physics , topology (electrical circuits) , computer science , water dimer , electron , physics , gaussian , function (biology) , machine learning , molecule , quantum mechanics , mathematics , hydrogen bond , combinatorics , evolutionary biology , biology , embedded system
We present an innovative method for predicting the dynamic electron correlation energy of an atom or a bond in a molecule utilizing topological atoms. Our approach uses the machine learning method Kriging (Gaussian Process Regression with a non-zero mean function) to predict these dynamic electron correlation energy contributions. The true energy values are calculated by partitioning the MP2 two-particle density-matrix via the Interacting Quantum Atoms (IQA) procedure. To our knowledge, this is the first time such energies have been predicted by a machine learning technique. We present here three important proof-of-concept cases: the water monomer, the water dimer, and the van der Waals complex H 2 ···He. These cases represent the final step toward the design of a full IQA potential for molecular simulation. This final piece will enable us to consider situations in which dispersion is the dominant intermolecular interaction. The results from these examples suggest a new method by which dispersion potentials for molecular simulation can be generated.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom