Ultrafast X-ray Scattering from Molecules
Author(s) -
Adam Kirrander,
Kenichiro Saita,
Dmitrii V. Shalashilin
Publication year - 2015
Publication title -
journal of chemical theory and computation
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.001
H-Index - 185
eISSN - 1549-9626
pISSN - 1549-9618
DOI - 10.1021/acs.jctc.5b01042
Subject(s) - ultrashort pulse , scattering , molecule , computer science , physics , nanotechnology , chemistry , materials science , optics , laser , quantum mechanics
We present a theoretical framework for the analysis of ultrafast X-ray scattering experiments using nonadiabatic quantum molecular dynamics simulations of photochemical dynamics. A detailed simulation of a pump-probe experiment in ethylene is used to examine the sensitivity of the scattering signal to simulation parameters. The results are robust with respect to the number of wavepackets included in the total expansion of the molecular wave function. Overall, the calculated scattering signals correlate closely with the dynamics of the molecule.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom