Quantum Deep Descriptor: Physically Informed Transfer Learning from Small Molecules to Polymers
Author(s) -
Masashi Tsubaki,
Teruyasu Mizoguchi
Publication year - 2021
Publication title -
journal of chemical theory and computation
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.001
H-Index - 185
eISSN - 1549-9626
pISSN - 1549-9618
DOI - 10.1021/acs.jctc.1c00568
Subject(s) - computer science , quantum , density functional theory , transfer of learning , wave function , artificial intelligence , function (biology) , deep learning , machine learning , quantum mechanics , physics , evolutionary biology , biology
In this study, we propose a physically informed transfer learning approach for materials informatics (MI) using a quantum deep descriptor (QDD) obtained from the quantum deep field (QDF). The QDF is a machine learning model based on density functional theory (DFT) and can be trained with a large database of molecular properties. The pre-trained QDF model can provide an effective molecular descriptor that encodes the fundamental quantum-chemical characteristics (i.e., the wave function or orbital, electron density, and energies of a molecule) learned from the large database; we refer to this descriptor as a QDD. We show that a QDD pre-trained with certain properties of small molecules can predict different properties (e.g., the band gap and dielectric constant) of polymers compared with some existing descriptors. We believe that our DFT-based, physically informed transfer learning approach will not only be useful for practical applications in MI but will also provide quantum-chemical insights into materials in the future. All codes used in this study are available at https://github.com/masashitsubaki.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom