The AIBLHiCoS Method: Predicting Aqueous pKa Values from Gas-Phase Equilibrium Bond Lengths
Author(s) -
Cate S. Anstöter,
Beth A. Caine,
Paul L. A. Popelier
Publication year - 2016
Publication title -
journal of chemical information and modeling
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.24
H-Index - 160
eISSN - 1549-960X
pISSN - 1549-9596
DOI - 10.1021/acs.jcim.5b00580
Subject(s) - biomolecule , aqueous solution , chemistry , gas phase , bond length , ab initio , thermodynamics , phase (matter) , phenol , computational chemistry , molecule , physics , organic chemistry , biochemistry
The proposed AIBLHiCoS method predicts a given compound's pKa in aqueous solution from a single ab initio bond length only, after geometry optimization in the gas phase. Here we provide simple and predictive equations for naphthols and chemically similar biomolecules. Each linear equation corresponds to a High-Correlation Subset (HiCoS) that expresses the novel type of linear free energy relationship discovered here. The naphthol family exhibits a clear and strong relationship with the phenol family, with the "active" C-O bond always producing the highest correlations. The proposed method can isolate erroneous experiments and operate in non-aqueous solution and at different temperatures. Moreover, the existence of "active fragments" is demonstrated in a variety of sizable biomolecules for which the pKa is successfully predicted.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom