Ligand-Binding-Site Refinement to Generate Reliable Holo Protein Structure Conformations from Apo Structures
Author(s) -
Hugo Guterres,
SangJun Park,
Wei Jiang,
Wonpil Im
Publication year - 2020
Publication title -
journal of chemical information and modeling
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.24
H-Index - 160
eISSN - 1549-960X
pISSN - 1549-9596
DOI - 10.1021/acs.jcim.0c01354
Subject(s) - virtual screening , docking (animal) , chemistry , ligand (biochemistry) , protein structure , binding site , crystal structure , molecular dynamics , protein ligand , crystallography , computational biology , receptor , computational chemistry , biology , biochemistry , medicine , nursing
The first important step in a structure-based virtual screening is the judicious selection of a receptor protein. In cases where the holo protein receptor structure is unavailable, significant reduction in virtual screening performance has been reported. In this work, we present a robust method to generate reliable holo protein structure conformations from apo structures using molecular dynamics (MD) simulation with restraints derived from holo structure binding-site templates. We perform benchmark tests on two different datasets: 40 structures from a directory of useful decoy-enhanced (DUD-E) and 84 structures from the Gunasekaran dataset. Our results show successful refinement of apo binding-site structures toward holo conformations in 82% of the test cases. In addition, virtual screening performance of 40 DUD-E structures is significantly improved using our MD-refined structures as receptors with an average enrichment factor (EF), an EF 1% value of 6.2 compared to apo structures with 3.5. Docking of native ligands to the refined structures shows an average ligand root mean square deviation (RMSD) of 1.97 Å (DUD-E dataset and Gunasekaran dataset) relative to ligands in the holo crystal structures, which is comparable to the self-docking (i.e., docking of the native ligand back to its crystal structure receptor) average, 1.34 Å (DUD-E dataset) and 1.36 Å (Gunasekaran dataset). On the other hand, docking to the apo structures yields an average ligand RMSD of 3.65 Å (DUD-E) and 2.90 Å (Gunasekaran). These results indicate that our method is robust and can be useful to improve virtual screening performance of apo structures.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom