z-logo
open-access-imgOpen Access
Phase Behavior of the System (Carbon Dioxide + n-Heptane + Methylbenzene): A Comparison between Experimental Data and SAFT-γ-Mie Predictions
Author(s) -
Saif Z.S. Al Ghafri,
Geoffrey C. Maitland,
J. P. Martin Trusler
Publication year - 2017
Publication title -
journal of chemical and engineering data
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.719
H-Index - 132
eISSN - 1520-5134
pISSN - 0021-9568
DOI - 10.1021/acs.jced.7b00145
Subject(s) - heptane , ternary operation , thermodynamics , carbon dioxide , phase (matter) , ternary numeral system , materials science , chemistry , organic chemistry , physics , computer science , programming language
In this work, we explore the capabilities of the statistical associating fluid theory for potentials of the Mie form with parameter estimation based on a group-contribution approach, SAFT-γ-Mie, to model the phase behavior of the (carbon dioxide + n-heptane + methylbenzene) system. In SAFT-γ-Mie, complex molecules are represented by fused segments representing the functional groups from which the molecule may be assembled. All interactions between groups, both like and unlike, were determined from experimental data on pure substances and binary mixtures involving CO2. A high-pressure high-temperature variable-volume view cell was used to measure the vapor–liquid phase behavior of ternary mixtures containing carbon dioxide, n-heptane, and methylbenzene over the temperature range 298–423 K at pressures up to 16 MPa. In these experiments, the mole ratio between n-heptane and methylbenzene in the ternary system was fixed at a series of specified values, and the bubble-curve and part of the dew-curve was measured under carbon dioxide addition along four isotherms

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom