Diffusion Coefficients of Carbon Dioxide in Eight Hydrocarbon Liquids at Temperatures between (298.15 and 423.15) K at Pressures up to 69 MPa
Author(s) -
Shane P. Cadogan,
Bhavik Mistry,
Yat Wong,
Geoffrey C. Maitland,
J. P. Martin Trusler
Publication year - 2016
Publication title -
journal of chemical and engineering data
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.719
H-Index - 132
eISSN - 1520-5134
pISSN - 0021-9568
DOI - 10.1021/acs.jced.6b00691
Subject(s) - chemistry , thermodynamics , taylor dispersion , alkane , molar volume , heptane , hydrocarbon , decane , dilution , dodecane , diffusion , analytical chemistry (journal) , partial molar property , hexadecane , toluene , chromatography , organic chemistry , physics
We report experimental measurements of the mutual diffusion coefficients in binary systems comprising CO2 + liquid hydrocarbon measured at temperatures between (298.15 and 423.15) K and at pressures up to 69 MPa. The hydrocarbons studied were the six normal alkanes hexane, heptane, octane, decane, dodecane and hexadecane, one branched alkane, 2,6,10,15,19,23-hexamethyltetracosane (squalane), and methylbenzene (toluene). The measurements were performed by the Taylor dispersion method at effectively infinite dilution of CO2 in the alkane, and the results have a typical standard relative uncertainty of 2.6%. Pressure was found to have a major impact, reducing the diffusion coefficient at a given temperature by up to 55% over the range of pressures investigated. A correlation based on the Stokes–Einstein model was investigated in which the effective hydrodynamic radius of CO2 was approximated by a linear function of the reduced molar volume of the solvent. This represented the data for the normal alkanes only with an average absolute relative deviation (AAD) of 5%. A new universal correlation, based on the rough-hard-sphere theory, was also developed which was able to correlate all the experimental data as a function of reduced molar volume with an AAD of 2.5%
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom