z-logo
open-access-imgOpen Access
Diffusion Coefficients of Carbon Dioxide in Eight Hydrocarbon Liquids at Temperatures between (298.15 and 423.15) K at Pressures up to 69 MPa
Author(s) -
Shane P. Cadogan,
Bhavik Mistry,
Yat Wong,
Geoffrey C. Maitland,
J. P. Martin Trusler
Publication year - 2016
Publication title -
journal of chemical and engineering data
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.719
H-Index - 132
eISSN - 1520-5134
pISSN - 0021-9568
DOI - 10.1021/acs.jced.6b00691
Subject(s) - chemistry , thermodynamics , taylor dispersion , alkane , molar volume , heptane , hydrocarbon , decane , dilution , dodecane , diffusion , analytical chemistry (journal) , partial molar property , hexadecane , toluene , chromatography , organic chemistry , physics
We report experimental measurements of the mutual diffusion coefficients in binary systems comprising CO2 + liquid hydrocarbon measured at temperatures between (298.15 and 423.15) K and at pressures up to 69 MPa. The hydrocarbons studied were the six normal alkanes hexane, heptane, octane, decane, dodecane and hexadecane, one branched alkane, 2,6,10,15,19,23-hexamethyltetracosane (squalane), and methylbenzene (toluene). The measurements were performed by the Taylor dispersion method at effectively infinite dilution of CO2 in the alkane, and the results have a typical standard relative uncertainty of 2.6%. Pressure was found to have a major impact, reducing the diffusion coefficient at a given temperature by up to 55% over the range of pressures investigated. A correlation based on the Stokes–Einstein model was investigated in which the effective hydrodynamic radius of CO2 was approximated by a linear function of the reduced molar volume of the solvent. This represented the data for the normal alkanes only with an average absolute relative deviation (AAD) of 5%. A new universal correlation, based on the rough-hard-sphere theory, was also developed which was able to correlate all the experimental data as a function of reduced molar volume with an AAD of 2.5%

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom