z-logo
open-access-imgOpen Access
Removal of Cadmium(II) from Wastewater Using Novel Cadmium Ion-Imprinted Polymers
Author(s) -
Xi Yu,
Yiting Luo,
Jinming Luo,
Xubiao Luo
Publication year - 2015
Publication title -
journal of chemical and engineering data
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.719
H-Index - 132
eISSN - 1520-5134
pISSN - 0021-9568
DOI - 10.1021/acs.jced.5b00494
Subject(s) - chemistry , adsorption , dithizone , physisorption , cadmium , langmuir adsorption model , enthalpy , exothermic process , precipitation polymerization , ion exchange , polymer , polymerization , inorganic chemistry , nuclear chemistry , ion , organic chemistry , radical polymerization , thermodynamics , physics
Cadmium ion-imprinted polymers (Cd-IIP) were synthesized by precipitation polymerization using a complex of dithizone and cadmium as a template. The saturation adsorption capacity of the Cd-IIP is two times that of the nonimprinted polymers (Cd-NIP). Homogeneous binding sites are confirmed by the Langmuir isotherm. The adsorption kinetics fit a pseudo-second-order model well; and the adsorption equilibrium time is only approximately 20 min. The effect of coexisting ions on the Cd(II)-IIP and NIP were investigated by competing with Pb(II), Zn(II), Co(II), and Cu(II), and the ratio of relative selectivity coefficients was greater than 1.68. Thermodynamic parameters indicated that Cd(II) adsorption over IIP and NIP was a spontaneous and exothermic process. The enthalpy changes in different temperatures and adsorption energy are lower than −20.0 and 8 kJ/mol; respectively. These indicate that the adsorption process may be dominated by physisorption. The Cd-IIP was used for five cycles with a small decrease in...

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom