Investigation of Binary Mixtures Containing 1-Ethyl-3-methylimidazolium Bis(trifluoromethanesulfonyl)azanide and Ethylene Carbonate
Author(s) -
Andreas Hofmann,
Matthias Migeot,
Thomas Hanemann
Publication year - 2015
Publication title -
journal of chemical and engineering data
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.719
H-Index - 132
eISSN - 1520-5134
pISSN - 0021-9568
DOI - 10.1021/acs.jced.5b00338
Subject(s) - chemistry , ethylene carbonate , differential scanning calorimetry , conductivity , electrolyte , thermodynamics , atmospheric pressure , viscosity , solvent , organic chemistry , electrode , physics , oceanography , geology
Temperature dependent viscosity, conductivity, and density data of binary mixtures containing ethylene carbonate (EC) and 1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)azanide (EMIM-TFSA) were determined at atmospheric pressure in a wide temperature range of (20 to 120) °C. Additionally, differential scanning calorimetry (DSC) measurements were performed from (−120 to +100) °C to characterize phase behavior of the mixtures. On the basis of the experimental data it is demonstrated that the lattice hole theory can be applied excellently to the conductivity data of the binary mixture EMIM-TFSA/EC. The viscosity data were fitted according to the Vogel–Fulcher–Tammann–Hesse (VFTH) equation and analyzed with the help of the fractional Walden rule. It is concluded that the mixtures can be classified as fragile according to ionicity. The aim of the study is to present fundamental physicochemical data about the mixtures as a basis for structure–property relationship-calculations of solvent mixtures or u...
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom